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Error Bounds for the Laplace Approximation for Definite
Integrals

F. W. J. OLVER

National Bureau ofStandards, Washington, D.C. 20234

Explicit error bounds are obtained for the wen-known asymptotic expansion
of integrals of the form

J: e-Ap(X)q(x)dx,

in which ,\ is a large positive parameter, p(x) and q(x) are real differentiable
functions, andp'(x) has a simple zero in the finite or infinite range [a,b]. The
bounds are expressed in terms of the supremum of a certain function, taken
over [a, b], and are asymptotic to the absolute value of the first neglected term
in the expansion, as ,\ -->- 00, Several illustrative examples are given, including
modified Bessel functions and the gamma function.

1. INTRODUCTION

Consider the integral

1= J: e-p(X)q(x)dx, (1.1)

in which the range of integration is real and may be finite or infinite. Assume
that (i) p(x) is real, attains its minimum value at an interior point g, say, of
[a, b] and increases fairly rapidly as Ix - gl increases; (ii) q(x) is a relatively
slowly-varying function. Then the underlying idea of the Laplace approxima
tion is that almost the whole contribution of the integrand to I arises from
the immediate neighborhood of g, In consequence, p(x) and q(x) may be
replaced by the leading terms in their Taylor-series expansions at x = g, and
the integration limits extended (if necessary) to -00 and +00. For example,
in the case whenp'(t) = O,p"W i= 0, and q(g) i= 0, we obtain

(1.2)

This procedure is particularly valuable when the integral contains a para
meter: the approximation often possesses an asymptotic property with respect
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(1.3)

to the parameter. In particular, ifp(x) is replaced by Ap(x), where A is positive,
then precise circumstances in which

Jb (277 )1/2e-AP(X)q(x)dx - e-AP(~)q(g) --
a ~10

as A --+ 00 are well known; see, for example, [1]-[5].
The object of this paper is to supply explicit bounds for the error in the

Laplace and related approximations, from which (i) asymptotic properties
with respect to parameters are directly deducible, (ii) realistic numerical
values can be determined. For earlier work on this problem see [6].

2. FORMULATION

By subdividing the range of integration and changing variables, we can
reduce the problem of Section I to the approximation of an integral of the
form

I(A) = J: e-AP(X)q(x) dx,

in which p(O) = p'(O) = 0, and

(2.1)

p'(x) > 0 (0 < x.,;; b). (2.2)

The functions p(x) and q(x) may themselves depend on the positive parameter
A.

We assume that p(x) and q(x) can be expanded in series of ascending powers
of x, given by

p(x) =P2X2 + P3x3 + P4X4 + ... ,

q(x) = qo +ql X +q2 x2+....

(2.3)

(2.4)

For our purposes it suffices for these series to be asymptotic expansions in
Poincare's sense, as x --+ O. In particular, this includes the common case in
which p(x) and q(x) are analytic at x = 0 and (2.3) and (2.4) are Maclaurin
expansions. In consequence of (2.2), we have P2 ;;:. O. In this paper we exclude
the case P2 = 0; in other words, we restrict x = 0 to being a simple saddle
point of the integral (2.1).

Since p(x) is an increasing function in the interval (O,b), we may adopt
p = p(x) as a new integration variable. This gives

where

I(X) = fP(b) -'\Pj( ) dp
o e P p1/2'

j(p) = pI/2(X)q(X)jp'(x).

(2.5)

(2.6)
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Reversion of (2.3) yields an expansion of the form

x = Clpl/2 + C2P + C3p J
/2+ ... ,

295

(2.7)

this series converging in a neighborhood ofp = 0 if (2.2) converges, otherwise
it is an asymptotic expansion for small p. Substitution of (2.7) in (2.6) yields

f(p) = ao + alpl/2 + a2P + a3p3/2 + ... , (2.8)

the coefficients as being expressible in terms ofPs and qs; in particular,

ao = qoj(2p~/2).

If, in (2.5), we replace the upper limit by infinity, substitute (2.8), and
integrate formally term by term, we obtain the series

~ asT{(s + l)j2}
L A(S+1)/2 .
s~o

(2.9)

The first term is one-half the Laplace approximation (1.3).1 In the case when
p(x) and q(x) are independent of A, the whole series is an asymptotic expansion
for I(A) as A ---')- 00; this is a consequence of Watson's well-known lemma
[7], Section 8.3.

We now write

n-I
I(A) = "" as r {(s + 1)j2} E (A)L A~+IY2 + n ,

s~o

(2.10)

where n is an arbitrary positive integer at zero, and seek bounds for the error
term En(A). In constructing these bounds we shall bear in mind the asymp
totic value

E (A) ~ an T{(n + 1)j2} an+1 T{(n + 2)j2}
n Nn+I)/2 + Nn+2)/2 + ...

applicable when p(x) and q(x) are independent of A.
We write

n-I
f(p) = L asps/2 +fn(P).

s~o

(A ---')- <Xl), (2.11)

(2.12)

The remainder termf,,(p) is a continuous function ofp, with the property

f,,(p) ~ anpn/2 (p ---')- 0), (2.13)

provided that an t= O. It is convenient to split En(A) in the form

En(A) = E~2)(A) - E~I)(A), (2.14)

1 The other half is contributed by the integral over the range a .;;; x .;;; o.
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(2.15)

(2.16)J
P(b l dn

E~2l()..) = 0 e-APfn(p) pl~2 '

and to consider the two parts separately in succeeding sections. If pCb) = 00,

then E~ll()..) = o.

3. BOUNDS FOR E~1)()..)

Denoting pCb) by f3, and taking a new integration variable r = p - f3, we
may write

where

n-l

E~l)()..) = 2: as Ls{p(b), )..},
s~O

(3.1)

LsCf3,)..) = J;e-APp(S-ll/2dp=e-A,B J: e- AT (r+f3)(S-ll/2dT. (3.2)

Clearly

For s;;;. 1, we apply the inequality

T + f3 <, f3 eT1,B.

This yields

(3.4)

provided that).. > ·!Cs - 1) f3-1. When s = 1, the relation (3.4) is an equality.
For other values of s and large values of A, the satisfactory nature of the
bound can be seen from the relation

f3<S-ll/2 e-A,B{ s-l (I)}
Ls(f3,)..) = ).. 1+ 2f3).. + 0 )..2

obtained by applying Watson's lemma to (3.2).
Substitution of (3.3) and (3.4) in (3.1) yields

e-AP(bl!a I
1E\1)()..)j <, )..pl/2(b) ,

()..-+oo),

(3.5)



LAPLACE APPROXIMATION

and

provided that the denominator in the last relation is positive.
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(n > 2), (3.6)

4. BOUNDS FOR E~2)(,\)

To bound E~2>C'\), we majorizefn(p) and then replace the upper integration
limit in (2.16) by infinity. One of the simplest results of this kind is given by

IE(2)(,\)1 <A fro e-).pp(n-I)/2dp=AnT{(n+ 1)j2} (4.1)
n "" n 0 ,\(n+I)/2 '

where
(4.2)

This form of majorant was used by Rosser [6]. However, An may not exist
whenp(b) = co, and in other cases it may be many times the size of lanl, causing
(4.1) to overestimate grossly the actual error; compare (2.11).

Provided that an =F 0, a more realistic bound is obtainable by using a
majorant of the form

If,,(p)! < lan[pn/2 e¢nvP,

where rPn is independent ofp. The best value of rPn is obviously

rPn = sup {~lnlfn(P)21}·
O<p<p(b) Vp anpn/

Combination of (2.16) and (4.3) gives

IE~2>C'\)1 < lanl f: exp(-,\p + rPn Vp) p(n-I)/2dp.

If rPn < 0, we have immediately

1E(2)(,\)1 lanl T{(n + 1)j2}
n < ,\(n+1)/2 .

(4.3)

(4.4)

(4.5)

(4.6)

Now suppose that rPn > 0. Taking a new integration variable w = VP, we
find that

f: exp (-,\p + rPnVP) p(n-I )/2 dp = 2 exp (~~) j: exp {-,\ ( w - t~)2} w" dw.

Clearly

j

¢n/(2).) {_ ( _ rPn)2} " j¢n/(2A) __1 (rPn)n+1
o exp'\ w 2'\ w dw < 0 w" dw - n + 1 2'\ ,
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= *(n) (cPn)' r{(n - s + l)j2}
L s 2A 2A(n .+1)/2 .
•~o

Hence

where2

I (2)(A)1 lanl r{(n + l)j2} (cPn
2
) ~ ( cPn ). (4.7)

En .;; A(n+l)/2 exp 4'\ 6 IXn,. 2,\1/2 '

= (n) r{(n - s + 1)/2}
IXn,. S r{(n+I)/2} (s.;;n);

LEMMA I.

1
IXn, n+1 = r{(n + 3)/2}" (4.8)

rex) .,;:: (~)1/2
rex +.1) "" 2x

(x;;;;, -!-). (4.9)

a>O),

Proof Denoting the logarithmic derivative of rex) by if;(x) and writing
X(x) = X l/2 r(x)/rex + -!-), we have

'(x) 1
~(x) = 2x + if;(x) - if;(x + -!-) = -!-{if;(x + I) - 2if;(x + -!-) + if;(x)} = tif;"W,

where ~ E (x, x + 1). Since

J
'" t2 -~t

if;"W=- ~tdt
ol-e

it follows that X'(x) is negative. Hence X(x) attains its greatest value in the
interval -!-.;; x < OCJ at x = 1-. This agrees with (4.9).

Repeated use of the lemma establishes that

(s=O,I, ...,n+l, n;;;;,l),

and substitution of this result in (4.7) yields the desired bound

IE(2)(A)I lanl r{(n + 1)/2} (cPn
2

cPnJnTT)
n .;; A(n+I)/2 exp 4A + 2 A (cPn;;;;,O,n;;;;,I), (4.10)

2 Somewhat curiously, as s -+ n + 1, the limiting form of the first of these expressions
equals the second expression.
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where 4>n is defined by (4.4). In terms of the original functions,

where
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(4.11)

(4.12)

When an vanishes, we may use the same procedure with a suitably chosen
constant in place of lanl on the right of (4.3). This case is illustrated in
Example 5 below.

Comparing the bounds of this and the previous section, we observe that the
bound for IE~1)(A)1 is exponentially smaller than the corresponding bound for
IE~2)(A)1 when Ais large. We also observe that the bound for IE~2)(A)1 has the
same asymptotic form as the modulus of the leading term in (2.11), provided
that an =1= O.

5. ALTERNATIVE BOUND FOR E~2)(A) WHEN p(x) AND q(x) ARE EVEN

If the coefficients Ps and qs of odd suffix vanish, then the as of odd suffix
also vanish. In this event, in place of (4.3) we may use the majorant

where

If; = sup {! In If2n(P)/}
2n O<p<p(b) P a2npn '

Substitution of this inequality in (2.16) gives immediately

1
E(2)(A) 1 <" la2nl T(n +t)

2n "" (A - 1f;2n)n+(1/2)

This result is applicable to integrals of the form

I(A) = J: e-).P(X)q(x)dx

(5.1)

(5.2)

(5.3)

(5.4)

in the case when p(x) has a minimum at an interior point of [a,b]. We may
suppose, without loss of generality, that this minimum occurs at x = 0, that
p(O) = p'(O) = 0, and that p'(x) has the same sign as x throughout [a, b]. By
truncation of one end of the range of integration, if necessary, we can arrange
that

pea) = pCb). (5.5)
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(5.6)

The contribution to I(>t) from the range 0.:;;; x .:;;; b may be transformed, as in
Section 2, into the form (2.5). For the range a .:;;; x .:;;; 0, we have

f
o ,\ fP(Q) ,\" dpe- P(Xlq(x)dx = e- Pf(p)-,
Q 0 pJ/2

where
/(p) = _pJ/2(X)q(X) ,

p'(x)
(5.7)

the value of pl/2(X), again, being nonnegative. It is easily verified that the
expansion corresponding to (2.8) is given by

/(p) = ao - aJpl/2 + a2P - a3p3/2 +.... (5.8)

Using (5.5), we derive

fP(bl / dp
I(>t) = 0 e-'\P{f(p) + (p)} pl/2' (5.9)

Since only integer powers of p occur in the expansion of f(p) +/(p), this
integral has the desired form.

In terms of the original variables we find that

f() f"() - J/2() {q(X) q(X)}
p + p - P X p'(x) - p'(x) ,

where x E [O,b] and x is the point in the interval [a, 0] such that

p(x) = p(x).

(5.10)

(5.11)

Remark. Because of the simplicity of (5.3) compared with (4.10), it is
tempting to try using a majorant of the form (5.1) even in the case when the
as of odd suffix do not vanish. When a2n+J!a2n .:;;;°this is feasible, but not
otherwise. This is because

(p --+ 0).

If a2n+J!a2n > 0, then regardless of the value of !f2n> the function e!/J2np cannot
grow quickly enough with p to majorize the quantity in braces. To put this
another way, !f2n = OCJ when a2n+J!a2n > 0.

6. EVALUATION OF o/n AND !fzn

The principal difficulty in evaluating the bounds derived above is the
determination of the number o/n defined by (4.4) or (4.11), or, alternatively,
the number !f2n defined by (5.2). The required supremum can always be
found by numerical computation, but in every example that has been carried
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out, the supremum has been approached at one of the endpoints of the interval
o < x < b. In this section we discuss tests which can sometimes be used to
establish this fact without recourse to computation. For convenience, we use
the notation

g(w) = f(p),

Application of Taylor's theorem to the expansion

g(w) = ao + al w + a2 w2+ ... + an_I wn- I + gn(w) (6.1)
gives

gn(w) = wng(n)(1))/nl,

where 0 < 1) < w. Let $n denote the greater of zero and

{
I jg(n)(w)l}sup -In--

O<w<pl/2(b) W g(n)(o) ,

(6.2)

(6.3)

so that

Then
Ig(n)(w)1 < Ig(n)(o)1 exp ($nw).

IgnCw)I< lanl wnexp ($n1)) < lanl wnexp ($nw).

(6.4)

(6.5)

Comparison of this result with (4.3) shows that cPn < $n'
This result furnishes an alternative way of computing cPm or rather an upper

bound for cPn. Usually, however, the evaluation of $n is as difficult as the
evaluation of cPn. The result is of some value, however, when g(w) is a com
pletely monotonic function3 in the interval 0 < w < pl/2(b). By this it is meant
that each derivative of g(w) is of constant sign, the sign alternating from one
derivative to the next. Obviously, Ig(n)(w)1 then attains its maximum at w = 0;
hence $n = 0 and (4.6) applies. It may be noticed that this particular result is
equivalent to the simple error test of Steffensen applied to the integral

(6.6)

This test postulates that if consecutive remainder terms in a series expansion
have opposite signs, then the truncation error is numerically less than the first
neglected term in the series, and has the same sign [9].

In the general case, the essential problem in evaluating cPm !fi2m or $m is
the determination of a supremum of the form

{
lnH(W)}sup ---,

O<w<c W

3 Also called an alternating function. Tests for complete monotonicity are given in [11
and [8].
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where (0, c) is a finite or infinite interval and H (w) is a nonnegative function
such that H(O) = 1. We have just considered the trivial situation in which
H'(w) is negative throughout (0, c). Let us now suppose that H'(w) is positive.

LEMMA 2. Let H (w) be a twice-differentiablefunction in the interval (0, c) such
that H(O) = 1 and H'(w) ;> 0.

(i) If H'(w)jH(w) is nonincreasing, or equivalently, H(w)H"(w) <;;;; H'2(W),
then w-llnH(w) is nonincreasing.

(ii) IfH'(w)jH(w) is nondecreasing, or equivalently, H(w)H"(w);> H'2(W),
then w-llnH(w) is nondecreasing.

This result is easily proved by differentiation. It can be applied to a power
series expansion in the following way.

LEMMA 3. Let
H(w) = ho + hi W+ h2w2 + ... ,

this expansion converging when °<;;;; w < c. Ifho = 1, hs ;> °(s;> 1), and

(6.7)

(s;> I), (6.8)

then w-llnH(w) is nondecreasing.

The genesis of this result is that when (6.8) is an equality for all s, H(w) is
an exponential function and w-llnH(w) is a constant.

When hi = 0, the condition (6.8) implies that all the higher hs vanish and the
lemma is trivial. Now assume that hi> 0. We then have

H(w)H"(w) - H'2(W) = ~ ~ws,L s .
s=o

where
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Addition of this sum to its reverse gives

2ks =~ (;) °1°2", Or 01°2", 0s_r{Or+ 1(Or+2 - 0s_r+l) + 0s-r+ 1(0s-r+2 - Or+l)}'
r~O

The quantity in braces is not less than

and is therefore nonnegative. Hence k s ;;;" 0, from which the stated result
follows.

7. ANALYTICAL EXAMPLES

Example 14

(A> 0). (7.1)

Rewritten in the standard form of Section 2, this integral becomes

I(A) = IOl e-),Pf(p) ~~2'
o P

where p = x2, and

(7.2)

f(p) =! In (1 +pl/2 +p) +! In (l - pl/2 +p) =! In C1 -=-~) . (7.3)

The expansion off(p) in ascending powers of p is given by (2.8), with ao = 0,
a2s+ I = 0, and

1
a2s = 2S (s == 1 or 2 (mod 3)),

1
a2s = -s (s == °(mod 3)), (s > 0).

(7.4)

From (2.10) and (2.14) we derive the desired expansion

n-I

I(A) = "" a2s res +!) +E(2)(A)L "'+(1/2) 2n'
s~1

(7.5)

where IE~~)(..\)I is bounded by (5.3). It remains to evaluate the quantity tP2n
defined by (5.2) withp(b) = 00.

In the present case

4 [3], Section 4.1.

(
1 - p3) n-I s

f2n(P) = !In -1- - ~ a2sp·
p s~1

(7.6)
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Hence, as p -* co, we have
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!In If2n(PJI-* O.
P a2nP

Therefore o/2n ;;;.. O. Also, as P -* 0,

! In If2n(PJI-* a2n+2 •
P I a2nP a2n

(7.7)

(7.8)

Since the last quantity is positive when n =-= 1 (mod 3) and negative otherwise,
it is reasonable to conjecture that

,I'2n -- aa2n+2-- n +n I ( I ( d 3»'t' n=-= mo ,
2n

equivalently,

o/2n = 0 (n =-= 2 or 0 (mod 3»;

(7.9)

(7.10)

for any nonnegative integer m. These inequalities may be established as
follows.

Differentiation of (7.6) and expansion of the result yields the identity

(n;;;.. I). (7.1l)

With the aid of (7.4), it is easy to verify that for positive P, the first derivatives
of the right sides of the inequalities (7.10) exceed the absolute values of the
expression (7.11) for n = 3m + I, 3m + 2, 3m + 3, respectively. Each of the
inequalities (7.10) is satisfied at P = 0; their validity for all positive values ofP
is now obvious.

Summarizing the results of this example, we have shown that the remainder
term E~~l('\) in the expansion (7.5) is bounded in absolute value by the first
neglected term of the expansion if n = 0 or 2 (mod 3), and by

{I - n/(n'\ + ,\)}-n-(1/2)

times the first neglected term if n =-= 1 (mod 3), provided that in the latter
event ,\ > n/(n + I).
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Example 2. The modified Bessel function 10 with large argument
Consider the function

1 J1110(A) = - eAcosx dx.
7T a

305

(7.12)

The principal contribution of the integrand comes from the neighborhood of
x = O. Owing to the presence of a second saddle-point at x = 7T, however, it is
necessary to break the range of integration before our analysis is applicable.
For simplicity we separate the range at its midpoint, but other subdivisions
might lead to slightly better error bounds in certain circumstances.

Thus we write

where

A
10(A) = ~ {leA) + E(3)(A)},

7T
(7.13)

E(3)(A) = J11 e-A(I-cosx)dx.
11/2 (7.14)

If!7T <; x <; 7T, then 1 - cosx;;;. 2X/7T. Hence a bound for the second integral
is given by

For I(A) we have, in the notation of Section 2, p = 1 - cosx and

(7.15)

where

1 '"
f(p) = (2 _ )112 = L a2spsp s~o

(0 <;p < 2), (7.16)

1
ao = vi'

1.3.5 ... (2s - 1)
a2s = ~~~'---=~-

4S s!v2
(s;;;. 1). (7.17)

In the bounds (3.5) and (3.6), we have pCb) = p(!7T) = 1. Hence

-A
IE\I>(A)I <; ~ r'

Av2
and

(7.18)

(A>n-f,n;;;.2), (7.19)

since

'"L a2s=f(l) = 1.
s~o

Next, we consider the bound (5.3). The location of the supremum in (5.2)
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can be found in the present example by use of Lemma 3 of Section 6. In the
notation of this lemma

w=p, H( ) =f2n(P)
p a pn'2n

If N == n + sand s;;;. 1, then from (7.17) we see that

(s+ 1)hs+1 hs_ 1

shs
2

(s+1)(2N+1)N 2N2+N+s
s(2N - 1)(N + 1) = 1 + (2N2 + N - 1) s > 1.

Therefore, the maximum value ofp-1lnH(p) is attained at p = 1. This gives

ifi2n = In (1 - ao - 0:2 - ... - a2n- 2). (7.20)
a2n

Numerical values computed from this formula are as follows:

ifiB = 0.61, ifilO = 0.62.

and (5.3) comprises the

ifio = 0.35, ifi2 = 0.50, ifi4 = 0.56, ifi6 = 0.59,

The aggregate of (7.15), (7.18), (7.19), (7.20),
desired bound for the error term

E2n(A) = E~;'>(A) - E~~~I(A) +E(3)(A) (7.21)

in the expansion

(7.22)

For example, taking n = I and bearing in mind that E\1}(A) and E(3)(A) are
both positive, we obtain on combination

(7.23)

where

(7.24)(A> 0.50).
I£2(10.)1 I I e- A

--:;;- <; (2:;;')1/2 8(X-':"'-6~50)3j2 + 210.

Other bounds for the remainder terms in the asymptotic expansions of
modified Bessel functions for large arguments are included in more general
results due to Meijer [10], [11], and the present writer [12], the former being
derived from infinite contour integral representations and the latter from
differential-equation theory. However, in the particular circumstances of the
present example, that is, zero order and real argument, the bounds we have
just derived appear to be the only ones whose ratios to the actual errors tend
to unity when the argument Atends to infinity.
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Example 3. Modified Besselfunction Kv with large argument

Consider the integral

307

(7.25)

In the notation of Section 2, we have p(x) = coshx - 1, q(x) = cosh vx, and

Thus

00

f(p) = 2: a2sps
s~o

(0 <p < 2), (7.27)

where ao = 1/V2, and5

(4v2- 12)(4v2- 32) ... {4v2- (2s - 1)2}
a2s = (2s)! 2s+(1/2) (s = 1,2, 00 .). (7.28)

Application of the results of Sections 2 and 5 gives

n-I
..\ ') _ ~ a2s res +!) (2) ,

e Ki/\ - L.., ,\s+(1/2) + E 2n (/\),

s~o

where IE~;)('\)I is bounded by (5.3). In the case v = 0, we have

1
f(p) = (2 +p)1/2'

(7.29)

(7.30)

Clearly If(n)(p)1 attains its maximum value at p = O. Hence by reasoning
similar to that of the second paragraph of Section 6, we see that the o/2n of
(5.2) is zero.

This result may be extended to integer values of v by use of the relation

* 2v (2v-s)2 cosh 2vt = L.., (_)S 2v _ s s (2 cosh t )2V-2S
s-o

Setting t = !x, we derive

(v= 1,2,3'00')'

(7.31)

f(p) = *(_)S~ (2V - S) 2"-s-I(2 +PY-S-(1/2). (7.32)
L.., 2v - s s
s~o

5 Probably the easiest way to derive (7.28) is by way of the differential equation
(2p + p2) f"(p) + (I + 2p) j'(P) + et - 1'2) f(p) = O.

21
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Repeated differentiation yields an expansion of the form

j (n)( ) _ * An•s
p - ~ (2 +p)s+n-v+(1/2)'

s=o
(7.33)

If n ;;;. v, then it is easily verified that all the coefficients An. s have the same
sign. Therefore, in these circumstances, Ij(n)(p)1 attains its maximum at
p = 0, and again !f;2n = O.

Accordingly, we have shown that when v is zero or a positive integer, the
error term Ei~)('\) in the asymptotic expansion (7.29) is bounded in magnitude
by the first neglected term, provided that n ;;;. v. This example is purely illustra
tive, however, because the result has been established in another way; indeed
it suffices that v be real and n > Ivi -1- ([7], Section 704).

When n does not exceed Ivl - -t, values of !f;2n may be computed from (5.2).
Alternative bounds available from differential-equation theory [12] make no
distinction between n :c Ivi - 1-.

8. NUMERICAL EXAMPLES

Example 4. The gamma junction

An integral representation for the gamma function ofreal positive argument
,\ is provided by

(8.1)

We shift the maximum value of the integrand from u = 1 to the origin by
means of the substitution u = 1+ x. This gives

where
p(x) = x-ln(I + x).

(8.2)

(8.3)

We may now either subdivide the range of the new integral at x = 0 and treat
the two parts separately by the theory of Section 4, or apply the theory of
Section 5 directly to (8.2). For illustrative purposes let us pursue the latter
course. We begin by noting that the preliminary condition (5.5) is satisfied.

Reversion of the expansion

yields,

x 2 x 3 x 4

p(x) = "2 - "3 + "4 - ... (Ixl < 1) (804)

(8.5)
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the reverted expansion converging for all sufficiently small Ipl. Therefore
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where

(8.6)

V2
0 0 =2'

4
03 =-135'

v2
°4 = 432'·· ..

(8.7)

Since p'(x) = xj(I + x), we obtain from (5.10) and (5.8)

(1 1) 00f(p) +J(p) = - - -;.: pl/2(x) = 2 L a2.p',
x x .-0

where xand x are related by

p(x) = p(x),

x being positive and xnegative.
The desired expansion is therefore

where

(8.8)

(8.9)

(8.10)

(8.11)

.1. { 1 I I F 2nCx) !}'f2n = sup - n ,
o<x<oo p(x) 2a2npn(x)

and

(8.12)

(8. I3)

Numerical values of F2n(x) have been computed for the range 0 < x < co,

the requisite values of x being found by solving (8.9) with the aid of Newton's
rule. The calculations show that the supremum in (8.12) is approached as
x ~ 0 for n = 0, 1, 3, and as x ~ co for n = 2. To four decimal places, the
values of the leading ifi2n are given by

ifio=0.I667, ifi2 = 0.0278, ifi4 =0.0000, ifi6 = 0.0245.

This appears to be the firit time that error bounds have been evaluated
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directly for the expansion (8.10). Nevertheless, the example is mainly illustra
tive. It is well known ([13], Section 79) that in the corresponding expansion
for the logarithm, given by

Inr(A.) - (A. -!)lnA. + A. - tin (27T) ~ i (2s + 1)~~~ 2)A.2s+1' (8.14)
s~o

in which B2s+2 denotes the Bernoulli number of order 2s + 2, the remainder
term is numerically less than the first neglected term (and has the same sign),
when A.> O.

Example 5. Modified Besselfunctions KAoflarge order

As our final example we consider the Debye asymptotic expansion for the
modified Bessel function

KACAp) =! J:oo eA(t-p cosh t) dt, (8.15)

for posItive p and large positive A.. The integrand has a maximum at
t=sinh-1(1/p). This is shifted to the origin by the transformation
t = x + sinh-I (lIp). Thus we derive

KiA.p) = !exp {A. sinh-I (IIp) - A.(1 + p2)1/2} I(A.), (8.16)
where

and

I(A.) = ]:00 e-AP(X) dx,

p(x) = (1 + p2)1/2(coshx -1) + sinh x - x.

Reversion of the Maclaurin expansion for p(x) leads to

where

(8.17)

(8.18)

(8.19)

v2
ao=~,

4 8
a3 = 15a6 - 27a lO '" .,

(8.20)

and a =(l + p2)1/4. Applying the theory of Section 4 to the integral (8.17), we
find that

where
n-l

I (A) = Joo e-AP(X)dx = "" asr{(s + 1)/2} +E(2)(A.)
1 0 L.. Ns+1)/2 n,l'

s~o

(8.21)

(8.22)
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n-l

1('\) = fro e-ilp(-Xldx = "'" (_)Sasr{(s + l)/2} + E(2)(,\)
2 0 L ,\(s+ll/2 n.2'

s~o
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(8.23)

and E21('\), E2~('\) are bounded by expressions of the form (4.10).
Let us evaluate these bounds in the case n = 2. Combination of (8.22) and

(8.23) yields

where

and

1('\) = ~e;)1/2 +E}2)(,\),

{ 1 IF2(x) I}4>2= sup ~ln-- ,
-oo<x<oo P (x) a2P(x)

(8.24)

(8.25)

(8.26)

(8.27)

In the last equality the upper or lower signs are taken according as x ~ 0;
p l12(x) is positive in both cases.

In (8.25), the coefficient a2 is given by (8.20). As a function of a, it vanishes
at a = (5/3)1/4, causing cP2 to become infinite and the bound (8.25) to break
down in the neighborhood of this value. This failure can be avoided, if we
replace la21 in the majorant (4.3) by 72/a, where 72 is the supremum of ala21
in the range I ,,;; a < OJ.

6 It is easily verified that 72 = V2/12; accordingly, we
have

where

(211')1/2 {x 2 (11')1/2}
jE}2)('\)1 ,,;; 12a,\3/2 exp 4~ + X2 2'\

{
I I12aFix)l}

X2 = sup pl/2(X) In V2p(x) .

(,\ > 0), (8.28)

(8.29)

Furthermore, if this supremum is evaluated with respect to 1 ,,;; a < OJ as well
as -OJ < x < OJ, then the bound (8.28) is uniform with respect to p E [0, OJ].
Numerical calculations yield the value X2 = 0.251, this value being approached
when a = 1 and x ~ 0 through negative values. Correspondingly,

tx22= 0.016, X2(11'/2)1/2 = 0.315.

6 Instead of 72/0', the supremum of la21 could be used, but this would have the disadvantage
of causing the ratio of the error bound to the approximation to become infinite as a ->- 00.
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Error bounds for this example are again available from differential-equation
theory [14]. In the present notation, this reference gives the uniform bound

where

(,\ > 0, P> 0), (8.30)

1 1
k = 6V5 + 12 = 0.158. '"

As ,\ -+ 00, this bound exceeds the right-hand side of (8.28) by the factor

1+ (2/V5) = 1.89 ....

9. SUMMARY AND CONCLUSIONS

In this paper we have considered the well-known asymptotic expansion for
integrals of the form

J: e->,p(X)q(x)dx,

for large positive values of the parameter '\, in cases where p(x) and q(x) are
real differentiable functions and p'(x) has a simple zero in the finite or infinite
range [a,b]. In the first part (Sections 1-5) we constructed explicit bounds for
the error terms associated with the expansion. These bounds are expressed in
terms of the supremum of a certain function with respect to the range of
integration. The bounds have the desirable property of being asymptotic to
the absolute value of the first neglected term in the expansion as ,\ -+ 00.

Analytical tests for locating the required suprema were given in Section 6 and
applied to examples in Section 7. In cases where the tests are inapplicable
numerical computation can be used; this was illustrated by examples in
Section 8.

The principal difficulty in evaluating the error bounds is the location of the
suprema referred to in the preceding paragraph. In every example carried
out so far, it has transpired that the suprema occur at the zero of p'(x) or at
one of the endpoints of the range of integration. This suggests that it may be
worthwhile to attempt the development of further analytical tests for locating
the suprema.

Compared with error bounds obtained by application of the asymptotic
theory of ordinary differential equations (in cases where such a comparison is
possible), the present bounds are slightly sharper but more difficult to evaluate
on the whole. Perhaps the last observation is not altogether surprising: it is
generally true that higher terms in an asymptotic expansion can be obtained
more readily from a differential equation than from an integral representation.
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Finally, the methods used in this paper appear to be capable of extension to
integrals having saddle-points of higher order, that is, points at which p/(x)
has a multiple zero.
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